Betti Numbers of Graded Modules and Cohomology of Vector Bundles

نویسنده

  • David Eisenbud
چکیده

In a remarkable paper Mats Boij and Jonas Söderberg [2006] conjectured that the Betti table of a Cohen-Macaulay module over a polynomial ring is a positive linear combination of Betti tables of modules with pure resolutions. We prove a strengthened form of their Conjectures. Applications include a proof of the Multiplicity Conjecture of Huneke and Srinivasan and a proof of the convexity of a fan naturally associated to the Young lattice. With the same tools we show that the cohomology table of any vector bundle on projective space is a positive rational linear combination of the cohomology tables of what we call supernatural vector bundles. Using this result we give new bounds on the slope of a vector bundle in terms of its cohomology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON GRADED LOCAL COHOMOLOGY MODULES DEFINED BY A PAIR OF IDEALS

Let $R = bigoplus_{n in mathbb{N}_{0}} R_{n}$ be a standardgraded ring, $M$ be a finitely generated graded $R$-module and $J$be a homogenous ideal of $R$. In this paper we study the gradedstructure of the $i$-th local cohomology module of $M$ defined by apair of ideals $(R_{+},J)$, i.e. $H^{i}_{R_{+},J}(M)$. Moreprecisely, we discuss finiteness property and vanishing of thegraded components $H^...

متن کامل

Tame Loci of Generalized Local Cohomology Modules

Let $M$ and $N$ be two finitely generated graded modules over a standard graded Noetherian ring $R=bigoplus_{ngeq 0} R_n$. In this paper we show that if $R_{0}$ is semi-local of dimension $leq 2$ then, the set $hbox{Ass}_{R_{0}}Big(H^{i}_{R_{+}}(M,N)_{n}Big)$ is asymptotically stable for $nrightarrow -infty$ in some special cases. Also, we study the torsion-freeness of graded generalized local ...

متن کامل

Yang-mills Theory and Tamagawa Numbers: the Fascination of Unexpected Links in Mathematics

Atiyah and Bott used equivariant Morse theory applied to the Yang–Mills functional to calculate the Betti numbers of moduli spaces of vector bundles over a Riemann surface, rederiving inductive formulae obtained from an arithmetic approach which involved the Tamagawa number of SLn. This article attempts to survey and extend our understanding of this link between Yang–Mills theory and Tamagawa n...

متن کامل

THE REGULARITY OF TOR AND GRADED BETTI NUMBERS By DAVID EISENBUD, CRAIG HUNEKE and BERND ULRICH

Let S = K[x1, . . . , xn], let A, B be finitely generated graded S-modules, and let m = (x1, . . . , xn) ⊂ S. We give bounds for the regularity of the local cohomology of Tork (A, B) in terms of the graded Betti numbers of A and B, under the assumption that dim Tor1 (A, B) ≤ 1. We apply the results to syzygies, Gröbner bases, products and powers of ideals, and to the relationship of the Rees an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007